Skip to contents

This dataset contains substance use behavior data from the National Longitudinal Survey of Youth 1997 (NLSY97) for three years: 1998, 2003, and 2008. The dataset focuses on youth born in 1984 and tracks three types of substance use behaviors: tobacco/cigarette smoking, alcohol drinking, and marijuana use.

Usage

nlsy97

Format

A data frame with 1004 rows and 38 columns:

SEX

Respondent's sex

RACE

Respondent's race

ESMK_98, ESMK_03, ESMK_08

(Ever smoked) Ever smoked in 1998, 2003, and 2008 (0: No, 1: Yes)

FSMK_98, FSMK_03, FSMK_08

(Frequent smoke) Monthly smoking in 1998, 2003, and 2008 (0: No, 1: Yes)

DSMK_98, DSMK_03, DSMK_08

(Daily smoke) Daily smoking in 1998, 2003, and 2008 (0: No, 1: Yes)

HSMK_98, HSMK_03, HSMK_08

(Heavy smoke) 10+ cigarettes per day in 1998, 2003, and 2008 (0: No, 1: Yes)

EDRK_98, EDRK_03, EDRK_08

(Ever drunk) Ever drunk in 1998, 2003, and 2008? (0: No, 1: Yes)

CDRK_98, CDRK_03, CDRK_08

(Current drinker) Monthly drinking in 1998, 2003, and 2008 (0: No, 1: Yes)

WDRK_98, WDRK_03, WDRK_08

(Weakly drinker) 5+ days drinking in a month in 1998, 2003, and 2008 (0: No, 1: Yes)

BDRK_98, BDRK_03, BDRK_08

(Binge drinker) 5+ drinks on the same day at least one time in the last 30 day (0: No, 1: Yes)

EMRJ_98, EMRJ_03, EMRJ_08

(Ever marijuana used) Have you ever used marijuana in 1998, 2003, and 2008? (0: No, 1: Yes)

CMRJ_98, CMRJ_03, CMRJ_08

(Current marijuana user) Monthly marijuana use in 1998, 2003, and 2008 (0: No, 1: Yes)

OMRJ_98, OMRJ_03, OMRJ_08

(Occasional marijuana user) 10+ days marijuana use in a month in 1998, 2003, and 2008 (0: No, 1: Yes)

SMRJ_98, SMRJ_03, SMRJ_08

(School/work marijuana user) Marijuana use before/during school or work in 1998, 2003, and 2008 (0: No, 1: Yes)

Source

National Longitudinal Survey of Youth 1997 (NLSY97)

References

Bureau of Labor Statistics, U.S. Department of Labor. National Longitudinal Survey of Youth 1997 cohort, 1997-2017 (rounds 1-18). Produced and distributed by the Center for Human Resource Research (CHRR), The Ohio State University. Columbus, OH: 2019.

Examples

library(magrittr)
nlsy_smoke <- slca(SMK_98(3) ~ ESMK_98 + FSMK_98 + DSMK_98 + HSMK_98) %>%
   estimate(data = nlsy97, control = list(verbose = FALSE))
summary(nlsy_smoke)
#> Structural Latent Class Model
#> 
#> Summary of model structure
#>                                    
#>  Number of manifest variables     4
#>  Number of latent class variables 1
#> 
#>  Latent variables (Root*):                
#>   Label: SMK_98*
#>  nclass: 3      
#> 
#>  Measurement model:                                                     
#>   SMK_98 -> { ESMK_98, FSMK_98, DSMK_98, HSMK_98 }  a
#> 
#> 
#> Summary of manifest variables
#> 
#>  Categories for each variable:
#>           response
#>             1    2 
#>    ESMK_98  Yes  No
#>    FSMK_98  Yes  No
#>    DSMK_98  Yes  No
#>    HSMK_98  Yes  No
#> 
#>  Frequencies for each categories:
#>           response
#>               1    2  <NA>
#>    ESMK_98  558  446     0
#>    FSMK_98  413  591     0
#>    DSMK_98  179  825     0
#>    HSMK_98  115  889     0
#> 
#> 
#> Summary of model fit
#>                                             
#>  Number of observations                 1004
#>  Number of free parameters                14
#>  Log-likelihood                    -1473.365
#>  Information criteria                       
#>    Akaike (AIC)                     2974.731
#>    Bayesian (BIC)                   3043.495
#>  Chi-squared Tests                          
#>    Residual degree of freedom (df)         1
#>    Pearson Chi-squared (X-squared)     0.000
#>      P(>Chi)                           1.000
#>    Likelihood Ratio (G-squared)        0.000
#>      P(>Chi)                           1.000

# \donttest{
# JLCA
model_jlca <- slca(
   SMK_98(3) ~ ESMK_98 + FSMK_98 + DSMK_98 + HSMK_98,
   DRK_98(3) ~ EDRK_98 + CDRK_98 + WDRK_98 + BDRK_98,
   MRJ_98(3) ~ EMRJ_98 + CMRJ_98 + OMRJ_98 + SMRJ_98,
   SUB_98(4) ~ SMK_98 + DRK_98 + MRJ_98
) %>% estimate(data = nlsy97, control = list(verbose = FALSE))
summary(model_jlca)
#> Structural Latent Class Model
#> 
#> Summary of model structure
#>                                     
#>  Number of manifest variables     12
#>  Number of latent class variables  4
#> 
#>  Latent variables (Root*):                                     
#>   Label: SMK_98 DRK_98 MRJ_98 SUB_98*
#>  nclass: 3      3      3      4      
#> 
#>  Measurement model:                                                     
#>   SMK_98 -> { ESMK_98, FSMK_98, DSMK_98, HSMK_98 }  a
#>   DRK_98 -> { EDRK_98, CDRK_98, WDRK_98, BDRK_98 }  b
#>   MRJ_98 -> { EMRJ_98, CMRJ_98, OMRJ_98, SMRJ_98 }  c
#> 
#>  Structural model:                                      
#>   SUB_98 -> { SMK_98, DRK_98, MRJ_98 }
#> 
#>  Dependency constraints:
#>   A                B                C               
#>   SUB_98 -> SMK_98 SUB_98 -> DRK_98 SUB_98 -> MRJ_98
#> 
#>  Tree of structural model:                   
#>   SUB_98  -> SMK_98
#>           -> DRK_98
#>           -> MRJ_98
#> 
#> 
#> Summary of manifest variables
#> 
#>  Categories for each variable:
#>           response
#>             1    2 
#>    ESMK_98  Yes  No
#>    FSMK_98  Yes  No
#>    DSMK_98  Yes  No
#>    HSMK_98  Yes  No
#>    EDRK_98  Yes  No
#>    CDRK_98  Yes  No
#>    WDRK_98  Yes  No
#>    BDRK_98  Yes  No
#>    EMRJ_98  Yes  No
#>    CMRJ_98  Yes  No
#>    OMRJ_98  Yes  No
#>    SMRJ_98  Yes  No
#> 
#>  Frequencies for each categories:
#>           response
#>               1    2  <NA>
#>    ESMK_98  558  446     0
#>    FSMK_98  413  591     0
#>    DSMK_98  179  825     0
#>    HSMK_98  115  889     0
#>    EDRK_98  735  269     0
#>    CDRK_98  521  483     0
#>    WDRK_98  218  786     0
#>    BDRK_98  288  716     0
#>    EMRJ_98  383  621     0
#>    CMRJ_98  226  778     0
#>    OMRJ_98   92  912     0
#>    SMRJ_98   98  906     0
#> 
#> 
#> Summary of model fit
#>                                             
#>  Number of observations                 1004
#>  Number of free parameters                63
#>  Log-likelihood                    -4069.741
#>  Information criteria                       
#>    Akaike (AIC)                     8265.483
#>    Bayesian (BIC)                   8574.923
#>  Chi-squared Tests                          
#>    Residual degree of freedom (df)      4032
#>    Pearson Chi-squared (X-squared)   290.482
#>      P(>Chi)                           1.000
#>    Likelihood Ratio (G-squared)      304.302
#>      P(>Chi)                           1.000
param(model_jlca)
#> PI :
#> (SUB_98)
#>   class
#>          1       2       3       4
#>     0.2788  0.1718  0.1180  0.4314
#> 
#> TAU :
#> (A)
#>      parent
#> child       1       2       3       4
#>     1  0.5251  0.0030  0.2874  0.0668
#>     2  0.3726  0.9781  0.4375  0.0000
#>     3  0.1023  0.0189  0.2751  0.9332
#>              
#> parent SUB_98
#> child  SMK_98
#> (B)
#>      parent
#> child       1       2       3       4
#>     1  0.0448  0.4483  0.9926  0.2327
#>     2  0.0539  0.1990  0.0074  0.6517
#>     3  0.9013  0.3527  0.0000  0.1155
#>              
#> parent SUB_98
#> child  DRK_98
#> (C)
#>      parent
#> child       1       2       3       4
#>     1  0.5317  0.0000  0.0000  0.0199
#>     2  0.2908  0.2269  0.7696  0.0000
#>     3  0.1775  0.7731  0.2304  0.9801
#>              
#> parent SUB_98
#> child  MRJ_98
#> 
#> RHO :
#> (a)
#>         class
#> response       1       2       3
#>    1(V1)  1.0000  1.0000  0.0484
#>    2      0.0000  0.0000  0.9516
#>    1(V2)  1.0000  0.6234  0.0000
#>    2      0.0000  0.3766  1.0000
#>    1(V3)  0.8504  0.0000  0.0000
#>    2      0.1496  1.0000  1.0000
#>    1(V4)  0.5463  0.0000  0.0000
#>    2      0.4537  1.0000  1.0000
#> 
#>        V1      V2      V3      V4     
#> SMK_98 ESMK_98 FSMK_98 DSMK_98 HSMK_98
#> (b)
#>         class
#> response       1       2       3
#>    1(V1)  1.0000  0.1912  1.0000
#>    2      0.0000  0.8088  0.0000
#>    1(V2)  0.5120  0.0000  1.0000
#>    2      0.4880  1.0000  0.0000
#>    1(V3)  0.0000  0.0000  0.6002
#>    2      1.0000  1.0000  0.3998
#>    1(V4)  0.0000  0.0000  0.7930
#>    2      1.0000  1.0000  0.2070
#> 
#>        V1      V2      V3      V4     
#> DRK_98 EDRK_98 CDRK_98 WDRK_98 BDRK_98
#> (c)
#>         class
#> response       1       2       3
#>    1(V1)  1.0000  1.0000  0.0218
#>    2      0.0000  0.0000  0.9782
#>    1(V2)  1.0000  0.3237  0.0000
#>    2      0.0000  0.6763  1.0000
#>    1(V3)  0.5842  0.0000  0.0000
#>    2      0.4158  1.0000  1.0000
#>    1(V4)  0.6223  0.0000  0.0000
#>    2      0.3777  1.0000  1.0000
#> 
#>        V1      V2      V3      V4     
#> MRJ_98 EMRJ_98 CMRJ_98 OMRJ_98 SMRJ_98

# JLCPA
nlsy_jlcpa <- slca(
   SMK_98(3) ~ ESMK_98 + FSMK_98 + DSMK_98 + HSMK_98,
   DRK_98(3) ~ EDRK_98 + CDRK_98 + WDRK_98 + BDRK_98,
   MRJ_98(3) ~ EMRJ_98 + CMRJ_98 + OMRJ_98 + SMRJ_98,
   SUB_98(5) ~ SMK_98 + DRK_98 + MRJ_98,
   SMK_03(3) ~ ESMK_03 + FSMK_03 + DSMK_03 + HSMK_03,
   DRK_03(3) ~ EDRK_03 + CDRK_03 + WDRK_03 + BDRK_03,
   MRJ_03(3) ~ EMRJ_03 + CMRJ_03 + OMRJ_03 + SMRJ_03,
   SUB_03(5) ~ SMK_03 + DRK_03 + MRJ_03,
   SMK_08(3) ~ ESMK_08 + FSMK_08 + DSMK_08 + HSMK_08,
   DRK_08(3) ~ EDRK_08 + CDRK_08 + WDRK_08 + BDRK_08,
   MRJ_08(3) ~ EMRJ_08 + CMRJ_08 + OMRJ_08 + SMRJ_08,
   SUB_08(5) ~ SMK_08 + DRK_08 + MRJ_08,
   PROF(4) ~ SUB_98 + SUB_03 + SUB_08,
   constraints = list(
      c("SMK_98", "SMK_03", "SMK_08"),
      c("DRK_98", "DRK_03", "DRK_08"),
      c("MRJ_98", "MRJ_03", "MRJ_08"),
      c("SUB_98 ~ SMK_98", "SUB_03 ~ SMK_03", "SUB_08 ~ SMK_08"),
      c("SUB_98 ~ DRK_98", "SUB_03 ~ DRK_03", "SUB_08 ~ DRK_08"),
      c("SUB_98 ~ MRJ_98", "SUB_03 ~ MRJ_03", "SUB_08 ~ MRJ_08")
   )
) %>% estimate(nlsy97, control = list(verbose = FALSE))
# }