Skip to contents

Computes confidence intervals for one or more parameters of a fitted model.

Usage

# S3 method for class 'slcafit'
confint(object, parm, level = 0.95, type = c("param", "logit"), ...)

Arguments

object

an object of class slcafit.

parm

an integer or string specifying the parameters for which confidence intervals are to be computed.

level

a numeric value representing the confidence level for the intervals. The default is 0.95 (95% confidence level).

type

a character string specifying the format in which the results should be returned. Options include "probs" for probability format and "logit" for log-odds (logit) format, with the default being "probs".

...

additional arguments.

Value

A matrix with two columns representing the confidence intervals for the selected parameters. The column names correspond to the specified confidence level:

  • 100 * (level / 2)%: The lower bound of the confidence interval.

  • 100 * (1 - level / 2)%: The upper bound of the confidence interval.

The level argument determines the confidence level, with common values being 0.95 for a 95% confidence interval and 0.99 for a 99% confidence interval.

Examples

param(nlsy_jlcpa, index = TRUE)
#> PI :
#> (PROF)
#>   class
#>              1           2           3           4
#>     0.2790 (1)  0.2146 (2)  0.2869 (3)  0.2195 (4)
#> 
#> TAU :
#> (A)
#>      parent
#> child           1            2            3            4
#>     1  0.0000 (5)  0.0000 (10)  0.1745 (15)  0.0000 (20)
#>     2  0.0901 (6)  0.4456 (11)  0.1939 (16)  0.0403 (21)
#>     3  0.3771 (7)  0.1675 (12)  0.1825 (17)  0.7018 (22)
#>     4  0.2620 (8)  0.0000 (13)  0.0000 (18)  0.0813 (23)
#>     5  0.2709 (9)  0.3869 (14)  0.4491 (19)  0.1766 (24)
#>              
#> parent PROF  
#> child  SUB_98
#> (B)
#>      parent
#> child            1            2            3            4
#>     1  0.0000 (25)  0.0114 (30)  0.8719 (35)  0.0000 (40)
#>     2  0.0000 (26)  0.9617 (31)  0.0000 (36)  0.0079 (41)
#>     3  0.0000 (27)  0.0000 (32)  0.0965 (37)  0.9210 (42)
#>     4  0.9941 (28)  0.0000 (33)  0.0000 (38)  0.0711 (43)
#>     5  0.0059 (29)  0.0269 (34)  0.0316 (39)  0.0000 (44)
#>              
#> parent PROF  
#> child  SUB_03
#> (C)
#>      parent
#> child            1            2            3            4
#>     1  0.0019 (45)  0.1821 (50)  0.8024 (55)  0.0319 (60)
#>     2  0.0097 (46)  0.7202 (51)  0.0000 (56)  0.0000 (61)
#>     3  0.0573 (47)  0.0442 (52)  0.1844 (57)  0.7168 (62)
#>     4  0.9311 (48)  0.0356 (53)  0.0084 (58)  0.2473 (63)
#>     5  0.0000 (49)  0.0179 (54)  0.0048 (59)  0.0040 (64)
#>              
#> parent PROF  
#> child  SUB_08
#> (D)
#>      parent
#> child            1            2            3            4            5
#>     1  0.0254 (65)  0.0457 (68)  0.9505 (71)  0.7958 (74)  0.1613 (77)
#>     2  0.7516 (66)  0.6690 (69)  0.0051 (72)  0.0000 (75)  0.1631 (78)
#>     3  0.2230 (67)  0.2853 (70)  0.0444 (73)  0.2042 (76)  0.6755 (79)
#>                            
#> parent SUB_98 SUB_03 SUB_08
#> child  SMK_98 SMK_03 SMK_08
#> (E)
#>      parent
#> child            1            2            3            4            5
#>     1  0.5664 (80)  0.8533 (83)  0.0335 (86)  0.7521 (89)  0.2872 (92)
#>     2  0.2229 (81)  0.1264 (84)  0.2589 (87)  0.2414 (90)  0.6127 (93)
#>     3  0.2107 (82)  0.0203 (85)  0.7075 (88)  0.0065 (91)  0.1001 (94)
#>                            
#> parent SUB_98 SUB_03 SUB_08
#> child  DRK_98 DRK_03 DRK_08
#> (F)
#>      parent
#> child            1             2             3             4             5
#>     1  0.0871 (95)   0.1442 (98)  0.0317 (101)  0.1525 (104)  0.7278 (107)
#>     2  0.0617 (96)   0.8387 (99)  0.0095 (102)  0.2302 (105)  0.1258 (108)
#>     3  0.8512 (97)  0.0170 (100)  0.9588 (103)  0.6173 (106)  0.1463 (109)
#>                            
#> parent SUB_98 SUB_03 SUB_08
#> child  MRJ_98 MRJ_03 MRJ_08
#> 
#> RHO :
#> (a)
#>         class
#> response             1             2             3
#>    1(V1)  0.0134 (110)  1.0000 (118)  1.0000 (126)
#>    2      0.9866 (111)  0.0000 (119)  0.0000 (127)
#>    1(V2)  0.0000 (112)  1.0000 (120)  0.6701 (128)
#>    2      1.0000 (113)  0.0000 (121)  0.3299 (129)
#>    1(V3)  0.0000 (114)  0.8833 (122)  0.0000 (130)
#>    2      1.0000 (115)  0.1167 (123)  1.0000 (131)
#>    1(V4)  0.0000 (116)  0.6460 (124)  0.0000 (132)
#>    2      1.0000 (117)  0.3540 (125)  1.0000 (133)
#> 
#>        V1      V2      V3      V4     
#> SMK_98 ESMK_98 FSMK_98 DSMK_98 HSMK_98
#> SMK_03 ESMK_03 FSMK_03 DSMK_03 HSMK_03
#> SMK_08 ESMK_08 FSMK_08 DSMK_08 HSMK_08
#> (b)
#>         class
#> response             1             2             3
#>    1(V1)  1.0000 (134)  1.0000 (142)  0.0759 (150)
#>    2      0.0000 (135)  0.0000 (143)  0.9241 (151)
#>    1(V2)  1.0000 (136)  0.5760 (144)  0.0000 (152)
#>    2      0.0000 (137)  0.4240 (145)  1.0000 (153)
#>    1(V3)  0.6934 (138)  0.0000 (146)  0.0000 (154)
#>    2      0.3066 (139)  1.0000 (147)  1.0000 (155)
#>    1(V4)  0.8061 (140)  0.0000 (148)  0.0000 (156)
#>    2      0.1939 (141)  1.0000 (149)  1.0000 (157)
#> 
#>        V1      V2      V3      V4     
#> DRK_98 EDRK_98 CDRK_98 WDRK_98 BDRK_98
#> DRK_03 EDRK_03 CDRK_03 WDRK_03 BDRK_03
#> DRK_08 EDRK_08 CDRK_08 WDRK_08 BDRK_08
#> (c)
#>         class
#> response             1             2             3
#>    1(V1)  0.5189 (158)  1.0000 (166)  0.0002 (174)
#>    2      0.4811 (159)  0.0000 (167)  0.9998 (175)
#>    1(V2)  0.0000 (160)  1.0000 (168)  0.0000 (176)
#>    2      1.0000 (161)  0.0000 (169)  1.0000 (177)
#>    1(V3)  0.0000 (162)  0.5259 (170)  0.0000 (178)
#>    2      1.0000 (163)  0.4741 (171)  1.0000 (179)
#>    1(V4)  0.0000 (164)  0.3720 (172)  0.0000 (180)
#>    2      1.0000 (165)  0.6280 (173)  1.0000 (181)
#> 
#>        V1      V2      V3      V4     
#> MRJ_98 EMRJ_98 CMRJ_98 OMRJ_98 SMRJ_98
#> MRJ_03 EMRJ_03 CMRJ_03 OMRJ_03 SMRJ_03
#> MRJ_08 EMRJ_08 CMRJ_08 OMRJ_08 SMRJ_08
confint(nlsy_jlcpa)
#> Error in MASS::ginv(hess[!nan, !nan]): 'X' must be a numeric or complex matrix
confint(nlsy_jlcpa, 1:4)
#> Error in MASS::ginv(hess[!nan, !nan]): 'X' must be a numeric or complex matrix